
Building Kerio Operator Provisioning Modules
for Kerio Operator 2.6.0

What Are Provisioning Modules?

A provisioning module is a self-contained package that handles provisioning for a set of
similar phone models. Usually there is one module per phone manufacturer but there are
exceptions: e.g. the Linksys and Cisco SPA phones are exactly the same (thus we put them
into the same module to avoid code duplication) and both very different from the Cisco 79xx
series (which has its own separate module).

Module Installation

There are two kinds of provisioning modules: bundled and add-on. Bundled modules come
with Operator and take care of all the phones that we support ”out of the box”. Add-on
modules can be installed by the user from special package files. Only modules signed by
Kerio Technologies are allowed to be installed by default. This restriction is necessary as the
module can do practically anything – e.g. set the phones’ SIP proxy to an eavesdropping
server instead of the Operator IP address. Bundled modules cannot be removed or updated
(other than by upgrading Operator). However, they can be disabled and an add-on module
can then handle the same phones in a different way. Inside, bundled modules look exactly
the same as add-on ones. They have the same structure, use the same API and are not in
any way ”privileged” – bundled and add-on modules have the exactly same set of features
available.

Modules can be installed, upgraded and removed in Administration > Provisioned Phones
> Advanced > Provisioning Modules. To install unsigned modules (use only for testing your
own modules!) hold down Shift while opening the Provisioning Modules dialog.

A Simple Provisioning Module

Throughout the documentation, we will be building a module that handles a small subset of
the Cisco SPA phones. We will start with the very simplest version that can just configure the
phone’s lines and nothing more. Later, we will add additional useful features like dialplan,
resync, support for the ”Download Configuration” feature in Operator Administration, or
support for phones with some typical problematic behaviour. You can find several versions
of the example as it evolves attached to this documentation: both unpacked (directories
example-1/, example-2/, ...) for convenient inspection and zipped (files example-1.zip,
example-2.zip, ...) for easy installation directly to Operator.

Trying Out the Example

You can try out our example on any instance of Operator 2.2 or newer but you probably
shouldn’t use any production machines. First of all, be sure to disable the original Cisco
SPA module in the Administration. Otherwise the bundled module might get used instead
of the newly installed one. Then you can use the steps described in Module installation to
install the example module. You can upload the zip file as you downloaded it and it will

1

just work. Or you can unpack it, make some simple changes, zip it again, upload the result
and see your modifications come to life.

If you happen to have a Cisco SPA 3xx/5xx phone, you can test that the module actually
provisions the phone. Otherwise, you can just look at the configuration files that the module
generates. There are several ways of doing that; the easiest one is over HTTP.

That is only possilbe when your module responds also to HTTP requests. Our example does
so but only for the purpose of being easy to try out. The SPA phones never use HTTP for
provisioning and a real SPA module should respond only to TFTP requests.

To see the generated configuration file, open the URL

http://operator_ip_address/Cisco/SPA504G/112233445566.cfg

in your browser. You should see a text file beginning with:

<!-- This is the example SPA template, version 1. -->

If you see something else, you probably didn’t disable the original SPA module (which
currently listens on HTTP too). If you see a 404 error, you probably mistyped the path or
didn’t successfully install the example module.

After doing this, a new phone should appear on Operator’s Provisioned Phones screen, with
MAC address 11:22:33:44:55:66 and phone type SPA example phone.

Provisioning Module Structure

Each provisioning module is (until signed) a zip archive containing a nubmer of mostly plain-
text files. The filenames inside the archive are case sensitive and we strongly recommend to
make all of them lowercase unless there is a reason to do otherwise. The directory structure
of our simple example looks like this:

+-- info
+-- phone_types
+-- providers/
| `-- spa.php
`-- templates/

`-- spa_main.tpl

It’s often customary to put all the files in an archive into one toplevel directory, so a structure
like that is also supported:

+--mymodule
+-- info
+-- phone_types
+-- providers/
| `-- spa.php
:
·

(the toplevel directory can be named arbitrarily). This option was added in 2.2.0 RC1.

The info File

The info file is a simple INI file containg the most basic information about a module like
its name and version. See the commented file in our example for an explanation of the
individual options.

2

The phone_types File

The phone_types file lists all the phone types supported by your module. A phone type
can represent one specific phone model (e.g. ”Cisco SPA504G”) or a whole group of similar
phones (such phone types are usually titled generic). Each phone type declaration contains:

• A unique string identifier (a short lowercase name without spaces, e.g. ”spa504g”),
which will be used later as an argument to associatePhone(). It shouldn’t change
between module versions.

• Maximum number of lines allowed for phones with this types.

• A user-visible name (e.g. ”Cisco SPA504G”).

• Other optional parameters (e.g. resync type), which shall be discussed later.

One such record might look like:

spa3xx 3 ``Example SPA 3xx'' RESYNC=SIPNOTIFY

See the example for exact syntax.

The Provider(s)

Most modules will contain only one provider. It’s possible to have more but let’s forget
about that for now. The provider should be named providers/(something).php where
(something) is an arbitrary string, usually related to which phone types the provider han-
dles (spa in our case). The extension is important. The provider is a PHP script and to
create it, basic knowledge of PHP codiding and regular expressions is required.

The core ”action” in provisioning is that phones ask for configuration files. We call each
of these ”askings” a provisioning request. Each request comes using one of the supported
provisioning protocols (TFTP, HTTP or FTP) and asks for a configuration file with a specific
filename.

Whenever Operator gets such a provisioning request, it runs the providers in all the installed
provisioning modules in some order (which isn’t important in most cases and we’ll worry
about it later). Each of the providers gets passed the request information (protocol, filename)
and has several tasks:

• Determine whether the request is relevant (e.g. the SPA module should react only to
filenames used by SPA phones).

– If it is, generate the content of the configuration file.
– If it is not, let other modules handle the request.

Provider Input

All information is passed to the module in form of global variables, which are set by Operator
prior to invoking the script. It is very similar to how variables like $_GET work in web-
oriented PHP. Most important variables are:

$PATH The filename of the requested configuration file including full path. Always
starts with a slash, even if the phone doesn’t originally include it. E.g.
'/Cisco/SPA504G/112233445566.cfg'.

$PROTO The protocol using which the phone asked for the file. One of the strings 'tftp'
(most common), 'http' and 'ftp'.

$OPERATOR_IP The IP address of the Operator machine. You will probably want to set
phone’s Outbound Proxy, Registrar and similar options to this value.

3

There are also variables that convey some of Operator’s global configuration parameters.
Examples include $TIMEZONE_OFFSET (the current timezone’s UTC offset in seconds) and
$VOICEMAIL_EXT (the voicemail access extension, usually 50).

The list is far from complete, more variables can be found in the reference guide and by
examining Kerio’s built-in provisioning modules.

Another bunch of important variables can be made available using associatePhone(), see
below.

Provider Output

The exection of the provider usually ends by calling one of the output functions. Each of
these functions returns some status to the provisioning system and/or sends some data to
the phone; all of them terminate the script when done. When the end on the script is
reached without calling any of these function, an implicit passNext() is assumed.

For a start, these two will be more than sufficient:

passNext() Call when the provider is not interested in the request. The request is passed
on to the remaining providers.

sendTemplate('template_name') Processes the template
templates/template_name.tpl to create a configuration file, which it then
sends to the phone and ends processing. See the section on templates for more
information.

There are several others (sendStaticFile(), sendNotFound(), sendOk()), which may come
in handy later. See the reference guide for those.

associatePhone()

By calling associatePhone('112233445566', 'sometype'), you are telling Opera-
tor: ”The currently requested configuration file belongs to a phone with MAC address
11:22:33:44:55:66 and phone type sometype (that is the identifier from the first column
of phone_types).

This is used by Operator for two things:

• The phone is looked up by the supplied MAC address in the table of provisioned
phones (i.e., the list you see on the Provisioned Phones screen in Administration).

• If no record is found, one is created and an extension is automatically generated for
the phone (if enabled).

• The configuration for the phone (e.g. its lines) is loaded from the Operator databases
and made available to the script in form of additional global variables.

The variables made available by associatePhone() include:

$LINES This variable contains an array of phone’s configured lines. Each line has the form:

array(
`TELNUM' => '10`,
'USER_FULLNAME' => `Admin',
'SIP_USERNAME' => `10p1',
`SIP_PASSWORD' => 'eej5Shae1aeh',
// ...

)

$ADMIN_PASSWORD A password that should be used to protect phone’s web administration
if possible. Set in the provisioned phone properties, generated by default.

4

As always, the full list of available variables can be found in the reference guide.

You might wonder where you are supposed to get those magical MAC address and phone
type values? The only information you have available is the filename. Decent phones (like
the new SPA series) include both their type and MAC address in the configuration filename
(e.g. /Cisco/SPA504G/112233445566.cfg). Most other phones can be forced to do so;
more on that later. In case you were wondering: no, we can’t just use the source MAC
address of the packet as the phone may be (and often is) behind a router.

A Short Example

<?php
if (preg_match(`~^/Cisco/SPA3[^/]+/([0-9a-f]+)\.cfg$~i',

$PATH, $matches)) {
associatePhone($matches[1], 'spa3xx');
sendTemplate(`spa_main');

}

This short snippet (together with the respective configuration template) is actually sufficient
to successfully provision a phone. More complete usage can be found in the example module.

Templates

A template is a recipe for generating a text file, in this case, the phone configuration file.
The template is fed phone configuration and other variables as input and is expected to give
a ready-to-use configuration file as output.

Template Syntax

The template is a text file that allows you to mix PHP code and literal output in a more
readable way than the <?php ... ?> markers. If you are familiar with templating engines
used in web frameworks (e.g. Smarty), this is a very similar concept.

The template syntax is line-based and there are two kinds of lines:

• Output lines are all lines NOT starting with a ‘@’ and are used to output text. Their
contents will get written to the output as-is, with the exception of variable expansions.
A variable expansion consists of a variable name (including the $ symbol) enclosed in
curly braces, and will be replaced with the value of the given variable in the output.
E.g. if you write

voicemail_ext = {$VOICEMAIL_EXT}

in your template, you will get

voicemail_ext = 50

in the output. The contents of the braces doesn’t have to be a simple variable name but
can be any PHP expression. E.g. {strtoupper($PHONE_LABEL)} is a valid variable
expansion.

• ‘At’ lines start with a ’@‘ and contain literal PHP code, which is executed as-is.
They are most commonly used to put conditions and loops around output lines (i.e.,
to output something conditionally and/or repeatedly). For example, you could write:

@ foreach ($LINES as $line) {
We have a line with number {$line['TELNUM']}.
@ }

For a phone with two lines, 10 and 11, this will be output:

We have a line with number 10.
We have a line with number 11.

5

Template Input

The template has access to the same global variables as the provider script: both the ones
set by Operator ($VOICEMAIL_EXT, $LINES, ...) and ones set by the by the provider (e.g.
$timezoneString in our example module).

Simple Resync (SIP NOTIFY)

Usually phones load their configuration once after booting. Resync is a general term for all
mechanisms that allow telling the phone: ”your configuration has changed, please reload it”.
Without it, you would have to manually reboot the phone after each configuration change
(e.g. adding a line).
The exact mechanism to accomplish this may vary among phones, wherefore you may config-
ure a resync method for each phone type using the RESYNC=some_type option in phone_types
(as shown in your example).
There is a single bundled resync method that comes with Operator: SIPNOTIFY. It uses SIP
NOTIFY packets with the Event: check-sync header to resync the phone. An example
of what these packets look like may be found in the SNOM documentation. However, this
resync method is not restricted to SNOMs; 3/4 of the phone models you can meet understand
these packets, including our SPAs. If your phone is one of them, getting resync to work is
as simple as appending RESYNC=SIPNOTIFY to the corresponding lines in phone_types.
Some phones need to configure several additional options for the SIP notify mechanism
(again in phone_types, see our example). Some of them are:

SIPNOTIFY_auth Set if the phone requires authentication for the resync requests. Accepted
values: 'none' (default), 'basic', 'digest' and 'auto'. Some phones (e.g. SNOMs,
SPAs) even have an option in their configuration file governing whether to require
authenticated resyncs or not.

SIPNOTIFY_event The event name, defaults to check-sync.

SIPNOTIFY_arg Additional arguments to the event, e.g. SNOMs require setting
SIPNOTIFY_arg="reboot=true".

If your phone doesn’t understand SIP NOTIFY, it is possible to implement arbitrary custom
resync methods that e.g. use the phone’s web administration to force a resync or reboot.
More on that later.
Operator invokes the specified method automatically whenever some configuration concern-
ing the phone changes (a line is added to the phone, the user owning one of the phone’s lines
changes fullname, ...) or it can be run manually using the Reload configuration item in the
context menu of the Provisioned Phones table in Administration.

Advanced Topics

Dialplans

Usually with IP phones, you have to end dialling a number by pressing some kind of ”OK”
button to tell the phone that there are no more digits to come and it can begin the call.
This may be fine when dialling a long number that you will want to re-check twice before
making the call. However, when calling a three-digit internal number, pressing an additional
button might get annoying. That’s where dialplans come in.
A dialplan is a string that tells your phone how long various extensions in your PBX are,
thus allowing it to start dialling immediately after typing enough digits. Each phone has a
completely different dialplan format and none of them is ”major” like SIP NOTIFY is for
resyncs. Therefore Operator doesn’t generate any dialplans itself; it only gives you the data
necessary to do it inside your module.
For each kind of dialplan that your script wishes to generate, create a script named
dialplans/(somename).php.

6

http://wiki.snom.com/FAQ/How_to_trigger_the_phone_to_synchronize_its_settings_via_mass_deployment

Dialplan Script Input

The dialplan script receives a list of all the existing extensions and prefixes in the PBX as
input, in the $DIALPLAN_DATA variable.

This variable contains an array with one entry for every extension or prefix. Each entry has
the form:

array(`prefix', max_num_of_digits_that_may_follow)

E.g. for an installation with extensions 10, 11 (plus the voicemail access number 50) and
an outbound route with prefix 0, $DIALPLAN_DATA will be:

array(
array(`10', 0),
array(`11', 0),
array(`50', 0),
array(`0', -1),

)

Currently max_num_of_digits_that_may_follow is always 0 (for extensions) or -1 (mean-
ing ”infinity”; for prefixes). However, this may change in future versions (e.g. we might
automatically group the first two records into array('1', 1) or might support outbound
routes with a fixed number length), so you should be prepared for any value.

Dialplan Script Output

The dialplan script should write the textual dialplan as understood by the phones to its
standard output (e.g. with echo or printf calls).

Associating Dialplans with Phones

Each of the generated dialplans is available to the providers in the DIALPLAN_(name) vari-
able (e.g. the dialplan generated by dialplans/spa.php is be available as DIALPLAN_spa).
However, using these variables is not recommended unless necessary.

A better way is to set a dialplan type for each phone model in phone_types. To do so, just
append DIALPLAN_TYPE=spa to the corresponding lines in phone_types. Then (after calling
associatePhone, of course), the correct dialplan for the current phone will be available in
the $DIALPLAN variable.

The second method has the advantage that when a dialplan changes (e.g. after adding a
new extension), Operator knows which phones are affected and can notify the user about
this fact.

Simplifying Dialplans

The ideal dialplan would simply contain all the existing extensions and prefixes, so the phone
would always exactly know whether something can follow the already typed digits or not.
However, the real world is a little more complicated: most phones (severely) limit the length
of supported dialplan strings. A longer one either gets ignored completely or worse only a
part of it is interpreted, making some numbers undiallable.

In the spirit of ”half a loaf is better than no bread”, Operator offers facilities to shorten the
dialplan at the expense of accuracy.

Currently only one, to be precise. As there is usually no information available about the
limits imposed by different phones on dialplan length/complexity and those limits may also
vary between firmware versions, we had to make a wild guess on how much to simplify the
dialplan. The result is dialplanSimplifyOnedigit.

7

dialplanSimplifyOnedigit takes the raw dialplan data as input and returns a simplified
version (with the same structure) that has only ”one-digit precision”, i.e. the number of
digits that can be typed until the phone automatically starts dialling will depend only on
the first digit of the dialled number. For example, when you have extensions 10, 150, 20,
25, 99 and an outbound route 9, dialplanSimplifyOnedigit will perform the following
transformation:

Original data	Simplified data

|
array(| array(

array(`10', 0), | array(`1', 2),
array(`150', 0), |
array(`20', 0), ======> array(`2', 1),
array(`25', 0), |
array(`99', 0), | array(`9', -1),
array(`9', -1), |)

)

Example dialplan (regex)

10|100|20|25|99|9.* | 1..|2.|9.*

Now when calling 10 or 99 you will have to end dialling manually but all the other extensions
will be dialled automatically. With most usual numbering schemes, this simplification should
give fairly good results. And as it always contains at most 12 items (one for each starting
digit, * and #), it should be ”short enough” for any phone.

If you are unsure what your phone can handle, we recommend using
dialplanSimplifyOnedigit.

An Example

An example dialplan code for a hypothetical phone that uses ordinary regular expressions
(as usually, of limited length) as its dialplan language:

$data = dialplanSimplifyOnedigit($DIALPLAN_DATA);
$first = true;
foreach ($data as $item) {

if ($first) $first = false;
else echo ``|'';

list($prefix, $maxLen) = $item;
switch ($maxLen) {

case 0: echo $prefix; break;
case -1: echo $prefix . `.*'; break;
default: echo $prefix . `.{' . $maxLen . `}'; break;

}
}

A real-life example for the Cisco SPAs can be found in the second versions of our example
module (example-2), look in dialplans/spa.php.

Handling Misbehaved Phones

Not all phones include both their exact model and MAC address in the filename they ask
for by default. Some filenames are even used by several different phone types, e.g. both
Polycoms and Yealinks ask for, among other files, /(mac_address).cfg. These situations
can be usually resolved using the techniques below (and others). At least we haven’t yet

8

found a phone that cannot be forced to send its model and MAC address, in a more or
less kludgy way. But it’s certainly possible such phones exist somewhere in the wild; if
they do, they are probably unusable with Operator’s provisioning (or pretty much any auto-
provisioning system).

Two-Layer Configuration

Let’s start with the easiest case. Some phones first ask for a ”meta-configuration file”, which
describes the location of the main configuration file and all the others. Often you can use
placeholders in the configured paths that will be replaced with the phone model and/or
MAC addresss. A typical example are Polycoms: they first load a (mac).cfg with the
following format:

<APPLICATION APP_FILE_PATH=``sip.ld''
CONFIG_FILES=``polycom-[PHONE_MODEL]-[PHONE_MAC_ADDRESS].cfg''
(...)>

</APPLICATION>

The [PHONE_MODEL] and [PHONE_MAC_ADDRESS] will be replaced by the respective values.
This is a feature of the phone, not Operator. Immediately after reading this, the phone will
ask for e.g. /polycom-spip550-112233445566.cfg and we are safe.

Implementing this in a provider will be as simple as:

if (preg_match(`~^/([0-9A-F]{12}).cfg$~i', $PATH, $matches)) {
sendTemplate('polycom_meta');

} elsif (preg_match(`~^/polycom-([^/]+)-([0-9a-f]+)\.cfg~i'
$PATH, $matches)) {

associatePhone($matches[2], $matches[1]);
sendTemplate('polycom_main');

}

where polycom_meta.tpl contains the meta-configuration snippet shown above (which is
just a piece of static text that doesn’t use any templating features and will be sent to the
phone as-is).

Redirection

Other phones don’t have a special kind of configuration file to tell them where their config-
uration is; however, they allow to change the configuration file location from within itself.
This is particularly the case of older SPA models, e.g. those made by Linksys.

By default, they ask e.g. for /spa941.cfg. When asked for this file, we can’t send any actual
settings (e.g. lines) because we don’t know which phone is making the request. Instead,
we output a small configuration file that just changes the configuration path (stored in the
Profile_Rule option):

<flat-profile>
<Profile_Rule>/Cisco/$PN/$MA.cfg</Profile_Rule>
<Resync_Periodic>5</Resync_Periodic>

</flat-profile>

$PN and $MA will again be replaced with product name and MAC address by the phone. There
is one more hack: we need to force the phone to load the configuration file immediately. To
accomplish that, we configure it to reload its configuration every five seconds. We will revert
this back to a normal value in the real configuration.

One advantage is that this ”hack” is done only once, from then on, the phone remembers the
new path and loads it directly. The disadvantage is that if the phone was previously used in a
different provisioning environment, there will be some other value ”stuck” in Profile_Rule

9

that Operator won’t recognize (or vice versa). The only solution then is to change the value
manually or factory reset the phone.

Implementation is very similar to the previous scenario and won’t be shown here; additionaly,
you can see it live in the third version of our example module (example-3).

Two-Stage Detection, Markers

Now comes the worst: phones that use weird filenames and don’t allow changing them.
In this case we assume that the phone sends at least its MAC address in at least one
request (otherwise it would be unprovisionable) but doesn’t allow easily detecting its type.
Typical examples are phones that use the /(mac_address).cfg file. The type information,
if discoverable at all, must be inferred from other files the phone ask for.

A typical example is presented by the Yealink/Well phones. They first ask for
/y0000000000(model).cfg and then /(mac).cfg. The information we need is spread across
two requests. Thus a mechanism for passing information between subsequent requests from
the same phone is necessary. In Operator, markers are such a mechanism.

Markers are variables that are bound to a phone IP address for a short amount of time
(currently 60s). When you call setMarker('mymarker', 'value') from within one request
and another request comes from the same phone (IP address) within the time limit, the
provider will get the $mymarker variable preset to 'value' (in a similar way it gets variables
like $PATH) and can react accordingly.

This warrants an example:

// This file is requested first
if (preg_match(`~^/y0{10}([0-9]{2})\.cfg$~i',

$PATH, $matches)) {
setMarker('yealink_model', $matches[1]);

// Simulate that the file doesn't exist
// Phone will try the next one, (mac).cfg
sendNotFound();

} elsif (isset($yealink_model)
&& preg_match(`~^/([0-9A-F]{12}).cfg$~i',

$PATH, $matches)) {
associatePhone($matches[1],

'yealink_t' . $yealink_model);
sendTemplate(`yealink_main');

}

Filename Conflicts, Module Sequence

As stated above, in most cases the order in which the modules are queried when a request
comes is not important. Let’s look at the situations where it is: when the same filename is
used by several different phone type. A textbook example is our favourite /(mac).cfg. This
filename seems to be very attractive for phone manufacturers – Polycom and Yealink we know
of but there may be more. Let’s look at the files each of them loads (let 11:22:33:44:55:66
be their MAC address):

Yealink T-32 Polycom IP350

/y000000000032.cfg
/112233445566.cfg

/112233445566.cfg
/polycom-spip350-112233445566.cfg
...

Now if the Polycom module was run before Yealink, it would ”steal” all /112233445566.cfg

10

requests, even those belonging to Yealink phones. The Polycom module doesn’t know that
some Yealink phones exist and Polycoms send nothing before the /112233445566.cfg based
on which they could be distinguished. Therefore, the Polycom module has no choice but to
respond to all /(mac).cfg requests; they look all the same to it.

The Yealink module on the other hand can recognize its requests from others: they are
preceded by the /y0000000000(model).cfg request. In other words, Yealink’s handling of
/(mac).cfg is more specific or selective than Polycom’s.

For this reason, we must ensure the Yealink module is run before the Polycom module.

Sequence numbers are a mechanism that allows that. Each module has a sequence number
assigned. When a provisioning request comes, modules are sorted lexicographically (i.e.,
15 comes before 2; this is done so that a new module can always be inserted between two
existing ones without renumbering) by their sequence numbers and are run in that order.
By default, all modules have a sequence number of 5 and there is no need to change it.

When there is such need, it may be set using the sequence option in the info file. E.g.
Kerio’s Yealink module’s info contains:

sequence = 4

Do not change sequence unless you know what you are doing!

The Download Configuration Feature

There is an item in the context menu of the Provisioned phones table (right next to ”Reload
configuration”) titled Download configuration. It allows the administrator to download a zip
archive of all the configuration files used to provision a phone in order to manually inspect
them, e.g. for couriosity and/or troubleshooting purposes.

In order to create such an archive, Operator needs to know which configuration files belong
to a given phone. The providers can associate files to phones, now we need a mapping in
the opposite direction.

That is set up using the REVIEW option in phone_types, which contains a whitespace-
separated list of configuration file names that phones of the given type request, in the order
they request them. Each filename has the format:

[?][!]proto:/some/path

Filenames prefixed with ? are optional: if they dont’t exist, they are silently ignored.
Filenames prefixed with ! are requested but are not expected to exist. All other files are
required and an error is raised if they don’t exist. {$MAC} will be replaced with the phone
MAC address in the filename.

Let’s use Yealinks, as described in Two-stage Detection, Markers as an example. The cor-
responding lines in phone_types might look like:

yealink_t18 1 ``Yealink SIP-T18P''
REVIEW=``!tftp:/y000000000018.cfg tftp:/{$MAC}.cfg''

yealink_t20 1 ``Yealink SIP-T20P''
REVIEW=``!tftp:/y000000000020.cfg tftp:/{$MAC}.cfg''

The REVIEW should be on the same line as the rest of the phone type definition; it’s wrapped
here only to fit on the page.

Internally, Operator sequentially simulates provisioning requests for the paths named in
REVIEW from some random made-up virtual IP address, i.e. it emulates what the phone
would do when loading its configuration. Whatever the providers return is put in the
resulting configuration archive. This way, things like markers will work as expected and as
long as REVIEW is set correctly, we can be sure that the files in the archive are exactly the
same as what the phone gets: they are generated using the same mechanisms.

11

Efficiently Handling Larger Number of Phone Types

So far we have worked only with generic phone types in our example in order to keep our
phone_types file short. However, it’s usually better to create specific phone types (i.e., one
phone type per phone model) when possible:

• The user will see the correct type in Administration.

• The correct maximum number of lines will be enforced.

• It’s often needed to differentiate the phones based on support of some advanced features
(e.g. SRTP, color logos, ...).

• It may be useful when implementing firmware upgrade (discussed later).

• It is considered generally ”cleaner”.

When using specific phone types, it is usually advised to include a generic ”unknown” type in
addition to the individual types. This way, when a new phone comes out after you released
your module, it will work immediately, even though it would show as ”unknown” in the user
interface. Most of Kerio’s built-in modules work this way.

In this section we shall discuss some features that will make maintaining a large number of
phone types much easier. Use of none of them is in any way necessary: they were created
chiefly to make your life easier. If you find any of them too complex or confusing, just don’t
use it.

The $PHONE_TYPES array

Most well-behaved phones send some kind of model name in their config, as seen on the SPA
example. We can easily parse the model name from the filename using regular expressions.
Now when a request for e.g. /Cisco/SPA504G/112233445566.cfg arrives, it would be good
to do something like: ”if a phone type named spa504g exists, use it for associatePhone(),
otherwise use spa_generic”. This would give us the forward compatibility of supporting
arbitrary not yet known phones (as long as they keep the filename format and understand
our configuration files) as generic while still using the ”right” types for phones that we know.

And we want to do that without re-enumerating all the supported phones again in the
provider script.

To do that, the $PHONE_TYPES variable is available to the providers. It’s an array of all the
phone types supported by the current module (as defined in phone_types). It’s keys are the
type identifiers (first column from phone types) and values contain additional information
about the types (maximum number of lines, the name=value options set in phone_types
for the given type, etc.).

The only thing you will be using this array for most of the time is testing a phone type’s
existence with isset($PHONE_TYPES[$sometype]).

Now we have all we need to create a simple specific/generic provider for the SPAs:

if (preg_match(`~^/Cisco/(SPA[^/]+)/([0-9a-f]+)\\.cfg$~i',
$PATH, $matches)) {

$model = strtolower($matches[1]); $mac = $matches[2];
if (isset($PHONE_TYPES[$model])) {

associatePhone($mac, $model);
} else {

// We don't know this phone - use the generic type
associatePhone($mac, 'spa_generic');

}
}

12

@set and @unset

Sooner or later you will get bored of typing:

spa501g 8 ``Cisco SPA501G'' RESYNC=SIPNOTIFY SIPNOTIFY_auth=digest
spa502g 1 ``Cisco SPA502G'' RESYNC=SIPNOTIFY SIPNOTIFY_auth=digest
spa504g 4 ``Cisco SPA504G'' RESYNC=SIPNOTIFY SIPNOTIFY_auth=digest
...

This is where @set and @unset come in.

@set and @unset are directives that can be used in phone_types and the use of '@' bears
no relation to the '@' used in templates. '@' is used simply because it’s easy to spot
visually.

@set sets some options for all the following phone types. Each option persists until changed
with another @set or unset with @unset. Options specified on the individual phone type
lines override those set with @set.

Now the code above becomes:

@set RESYNC=SIPNOTIFY SIPNOTIFY_auth=digest

spa501g 8 ``Cisco SPA501G''
spa502g 1 ``Cisco SPA502G''
spa504g 4 ``Cisco SPA504G''
...

@unset RESYNC SIPNOTIFY_auth

Any @unset-s at the very end of phone_types may be omitted. Wildcards are allowed with
@unset: you can write e.g. ”@unset RESYNC SIPNOTIFY_*” or even ”@unset *” to cancel
any @set-s still in effect.

Variable expansion in phone_types

You may have noticed that @set as introduced above cannot be used e.g. for setting REVIEW,
which is never exactly the same for each phone type as it must contain some indication of
the phone model. However its values are usually very similar and we don’t want to type
them again and again. Let’s take the Yealinks as described in Two-Stage Detection, Markers
as an example:

yealink_t28 6 ``Yealink SIP-T28P''
REVIEW=``!tftp:/y000000000000.cfg tftp:/{$MAC}.cfg''

yealink_t32 3 ``Yealink SIP-T32G''
REVIEW=``!tftp:/y000000000032.cfg tftp:/{$MAC}.cfg''

yealink_t38 6 ``Yealink SIP-T38G''
REVIEW=``!tftp:/y000000000038.cfg tftp:/{$MAC}.cfg''

...

The values differ from one another by two characters. And believe us, most real REVIEW
strings are much longer. We need a way to include ”placeholders” in the common @set value
that will be replaced with specific values for each individual phone type (in this case the
model number).

These placeholders are called variable expansions. Variable expansion has exactly the
same syntax as in templates: a variable name (or PHP expression) in curly braces, e.g.
{$somevar}. As you have probably guessed, we have already see an example of variable
expansion: the {$MAC} used in REVIEW. Now our example becomes:

13

@set REVIEW=``!tftp:/y0000000000{$model}.cfg tftp:/{$MAC}.cfg''
yealink_t28 6 ``Yealink SIP-T28P'' model=00
yealink_t32 3 ``Yealink SIP-T32G'' model=32
yealink_t38 6 ``Yealink SIP-T38G'' model=38
...

As you can see, the variable expansions in REVIEW can reference values set for the individual
types, even though they are defined ”lower” in the file. This is called late expansion. It
works because variable expansion is done separately for each phone type after the @set
mechanism. In this example, the @set transforms the lines above into:

yealink_t28 6 ``Yealink SIP-T28P'' model=00
REVIEW=``!tftp:/y0000000000{$model}.cfg tftp:/{$MAC}.cfg''

yealink_t32 3 ``Yealink SIP-T32G'' model=32
REVIEW=``!tftp:/y0000000000{$model}.cfg tftp:/{$MAC}.cfg''

yealink_t38 6 ``Yealink SIP-T38G'' model=38
REVIEW=``!tftp:/y0000000000{$model}.cfg tftp:/{$MAC}.cfg''

...

It just adds the variable to all the phone types, without knowing anything about expansion.
Later, when the value is needed, it is expanded. Then e.g.

yealink_t38 6 ``Yealink SIP-T38G'' model=38
REVIEW=``!tftp:/y0000000000{$model}.cfg tftp:/{$MAC}.cfg''

becomes

yealink_t38 6 ``Yealink SIP-T38G'' model=38
REVIEW=``!tftp:/y000000000038.cfg tftp:/112233445566.cfg''

as one would expect.

Variable expansion can reference:

• Any options set in phone_types, either for one specific phone type or with @set. These
can be:

– Real Operator options (RESYNC, REVIEW, etc.). You probably won’t find much use
for this.

– Custom options. Any name=value pair in phone_types that is not a known
Operator option is a custom option but it’s recommended to name them lowercase
to avoid clashes with future Operator options. That’s model in our example. This
is probably the most useful thing to use in variable expansion.
The custom options are available not only for phone_types variable expansion
but also as variables in your provider and resync scripts!

• Implicit variables provided by Operator. Only one seems to be of any interest:

– $IDENT – contains the identifier (first column) of the relevant phone type.

With the use of $IDENT, we could further shorten our example. We see that the model
number information is duplicated: once in the identifier and once in model=. We could
write this instead:

@set model=``{substr($IDENT, 9)}''
@set REVIEW=``!tftp:/y0000000000{$model}.cfg tftp:/{$MAC}.cfg''

Exception: T-28 uses ``00'' instead of ``28'' in the filename.
yealink_t28 6 ``Yealink SIP-T28P'' model=00
yealink_t32 3 ``Yealink SIP-T32G''
yealink_t38 6 ``Yealink SIP-T38G''
...

14

Here you can see an application of the rule ”options set for a specific type override those
set with @set”. Almost all Yealinks use the model number from their name in the filename;
only historical T-28 uses all zeroes. Therefore we set model explicitly for T-28; all the others
will inherit model="{substr($IDENT, 9)}" from the @set and will set their model number
from their identifier.
This may almost seem unnecessary but when you have twenty different models with names
a little longer than six characters, you’ll appreciate it. And with SPAs, it can be used quite
directly:

@set REVIEW=``tftp:/Cisco/{strtoupper($IDENT)}/{$MAC}''

See the third version of our example module (example-3) for a real-life example of the spe-
cific/generic phone type model, variable expansion in phone_types, REVIEW and misbehaved
phone redirection.
Usage of expansion isn’t limited to REVIEW and @set: it can be used in any of the
phone_types options.

Implementing Custom Resync Mechanisms

The RESYNC option in phone_types may be set either to a built-in resync method (customar-
ily named uppercase, currently only SIPNOTIFY) or the name of a resync script (preferrably
lowercase). E.g. when you set RESYNC=spa, Operator uses a script resync/spa.php to
perform the resync.

Resync Script Input

When started, the resync script has access to the full phone and Operator configuration,
i.e. almost the same variables as what the provider has after calling associatePhone():
$LINES, $ADMIN_PASSWORD, $VOICEMAIL_EXT, ... Request-related variables (like $PATH) are
not available as they make no sense in this context. Additional variables that might be of
interest:

$LAST_CONFIG The most useful variable of all. Contains the last configuration suc-
cessfully read by the phone. Keys are configuration variable names, i.e. you
have $LAST_CONFIG['LINES'], $LAST_CONFIG['ADMIN_PASSWORD'] and so on. This
is important e.g. when the user is changing the phone administration pass-
word. $ADMIN_PASSWORD will contain the new password but the phone doesn’t
know about it yet, so it will ask for the old one. Therefore, you have to use
$LAST_CONFIG['ADMIN_PASSWORD'] when authenticating your resync.

$MAC, $IDENT The phone MAC address and type (i.e., whatever was passed to
associatePhone() when the phone was created).

You will probably find these values most useful:

• $LAST_CONFIG['ADMIN_PASSWORD']

• $LAST_CONFIG['LINES'][0]['SIP_USERNAME']

• $LAST_CONFIG['LINES'][0]['SIP_PASSWORD']

HTTP(S) Resync

The most common resync method after SIP NOTIFY is using some kind of ”reload con-
figuration” option the phone’s web administration, or, if that isn’t available, most phones
have at least a ”reboot” button there. It’s just a matter of sending the right HTTP re-
quests. Fortunately, almost all phones currently use HTTP authentication to secure their
administration, which is much easier than emulating .
The function allowing this is:

15

urlopenPhone(`scheme', '/path?query',
array(`additional' => 'options'));

Currently only 'http' and 'https' schemes are allowed. You see that the IP address
is not mentioned anywhere – it will be filled in automatically. For example, to request
http://<phone_ip>/admin/resync?, call:

urlopenPhone(`http', '/admin/resync?`, array(...));

Additional options may contain the following:

user, password Authentication information.

auth The authentication type. 'auto' (default), 'basic' or 'digest'. user and password
are required when this option is set.

body The request body. When this option is set, a POST request is sent instead of the
default GET.

verifySslCert Set to false to disable SSL certificate verification. Almost always needed
with HTTPS.

The function returns a file handle from which you can read the reply using standard PHP
functions (fread and friends). You have to read the whole reply and close the handle, even
if you are not interested in it.

An example HTTP resync for the SPA phones (which has the advantage that unlike SIP
NOTIFY it works even when the phone has no lines assigned):

$fh = urlopenPhone(`http', '/admin/resync?`, array(
'user' => `admin',
'password' => $LAST_CONFIG[`ADMIN_PASSWORD']));

while (!feof($fh)) fread($fh, 8192);
fclose($fh);

A complete example of a resync script can be found in the fourth version of our example
module (example-4).

A Completely Generic Resync

In the unlikely scenario that your phone has some completely alien resync mechanism that
is neither SIP NOTIFY nor HTTP(S), we offer a generic mechanism. Call:

$sock = connectPhone(`proto', port);

and you will get a socket connected to the phone using the given protocol ('tcp' or 'udp')
and port, which can be manipulated using the usual PHP socket functions (socket_send,
socket_recv, ...) in an arbitrary way. E.g. to connect using SIP:

$sock = connectPhone(`udp', 5060);

The ultimate example is Kerio’s implementation of the SIP NOTIFY mechanism, which is
built using the exactly same API. You can find it in the

/opt/kerio/operator/lib/php/provisioning/api/util_resync_sipnotify.php

directory of your Operator installation. The notes at the end of the documentation describe
how to access such files. Don’t forget to close your sockets when done.

16

http://php.net/manual/en/ref.sockets.php

Firmwares and Logos

Some phones allow their firmware to be upgraded using provisioning. Some allow setting a
logo to be shown on their screens (which you are probably aware of because of the Kerio
Operator logo shown there by default). Surprisingly, these two tasks require doing very
similar things on the server side, therefore they are implemented as one feature in the
Operator provisioning system, called Firmwares and Logos. It allows users to upload such
files, which are then sent to the phones during provisioning.

We will use logos as an example to introduce all the basic concepts. All of them apply to
firmwares, too, however, with firmwares one has to be careful about a lot of other things
that will be discussed later.

Slots

This is the Firmwares and Logos dialog from Operator Administration:

Each row in the table is a slot that can hold one uploaded file of a given kind (a firmware
image for a given class of phones, a logo with a given resolution and color depth, etc.). When
a new file is uploaded to the same slot, any previous content is erased.

Usually, there is one slot for each ”kind” of file supported. With logos, there usually one
slot for every allowed combination of dimensions and color depth. Whatever you upload to
this slot will be used on ALL phones with compatible logo format. It’s not possible to set
a different logo for one individual phone.

Defining Slots

Creating a new firmware/logo slot is very simple. It consist of adding a single line to
the firmware_types file in your module. It has the same basic syntax as the familiar
phone_types, only different columns. Consider an example:

@set SCRIPT=logo
logo_bw ``Example SPA b/w logo'' logo \

LONGDESC=``Monochromatic 128x48 logo image''
logo_color ``Example SPA color logo'' logo \

LONGDESC=``Color 320x240 logo image''

The values are, in order: unique identifier, human-readable name (shown in the firmwares
dialog), type (firmware, logo or other) and additional name=value parameters (LONGDESC is
an informative text shown in the UI to suggest users what kind of files to upload, for SCRIPT
see below).

17

Verification & Preprocessing

Whenever the user uploads a file to a slot, it is not directly saved. It is first processed using
a script, which has two main tasks:

• Verify that the uploaded file is correct. E.g. check if the user didn’t upload a text file
instead of a picture.

• Preprocess the uploaded file to a form in which it can be offered to the phones. E.g.
convert and uploaded logo to the correct file format and resolution.

The verification and conversion is done only once upon uploading the file. Afterwards, the
logo is stored inside Operator in the already converted format for efficiency reasons.

The Preprocessing Script

The preprocessing script can be either a PHP script or a Unix shell (i.e., bash) script. The
latter is strongly recommended, as various file manipulation and invocation of external tools
(e.g. for image processing) tends to be much easier in the shell.

The script should be saved as firmware/<name>.sh or firmware/<name>.php, where
<name> is the value of the SCRIPT parameter from firmware_types if specified (this al-
lows using one script for several slots), the slot identifier otherwise.

The script gets the following variables as input (global variables in PHP, environment vari-
ables in the shell):

• $FW_INFILE – the original uploaded file.

• $FW_OUTDIR – the directory to which to save preprocessed output.

• $FW_VERIFY – set to 0 when user wishes to relax file verification, 1 otherwise.

• $FW_IDENT – the identifier of the slot we are uploading to. Useful when one script
handles multiple slots.

This script should perform some checks on $FW_INFILE. If it’s deemed valid, it should be
processed in any manner appropriate and the result should be saved to $FW_OUTDIR under
whatever name(s) you choose. You can use the $FW_OUTDIR/_tmp directory for storing
temporary and intermediate files. It is automatically created before your script is run and
deleted after it ends, successfully or not. When finished, terminate your script by calling the
accept_firmware function (acceptFirmware() in PHP). The whole $FW_OUTDIR directory
is stored as-is by Operator and made available to provider scripts as described below.

Your script is run with $FW_OUTDIR as its working directory so you rarely have to reference
this variable directly. Simply use relative paths.

If the file is not considered valid, reject_firmware (rejectFirmware()) should be called,
also exiting your script. Upon rejecting a firmware, the whole of $FW_OUTDIR is automatically
cleaned up so you don’t have to worry about leaving half-processed files around.

A trivial script that does no checks, no preprocessing, and simply stores the uploaded file
as-is might look like this:

cp $FW_INFILE logo.bmp
accept_firmware

Or in PHP:

<?php
copy($FW_INFILE, `logo.bmp');
acceptFirmware();

18

Serving the Files to Phones

There are two ways in which the phones access files such as firmwares and logos:

• For some phones, the path of the file is specified in the phone configuration file. This
seems to be the more common case.

• Others load these files from hard-wired locations.

Fixed Filenames This is the easy case. For example, if the SPA phones always down-
loaded the logo from /spa_logo_bw.bmp (they don’t), you could write something like this
in the provider:

if ($PATH == `/spa_logo_bw.bmp' && haveFirmware('logo_bw')) {
sendFile(getFirmwareFile(`logo_bw', 'logo.bmp'));

}

haveFirmware() checks whether there is a file uploaded in the given slot (specified by the
identifier from the first column of firmware_types).

getFirmwareFile() returns the on-disk physical path of a file in a firmware slot. The
first parameter is again the slot identifier, the second says which file from the preprocessed
firmware (which is a directory) we want. sendFile sends the contents of the file to the
phone (i.e., to the phone it will seem as if there were a file called /spa_logo_bw.bmp stored
on the TFTP server, with the same contents as the logo.bmp created by the preprocessing
script).

Arbitrary Filenames In fact, the SPAs (along with most phones) expect the logo file-
name to be specified in their configuration file:

<BMP_Picture_Download_URL>tftp://1.2.3.4/some/file.bmp</BMP_Picture_Download_URL>
<Select_Background_Picture>BMP Picture</Select_Background_Picture>

The filename can be completely arbitrary. However, it should contain:

• A prefix unique for your module, to prevent name clashes with others. We recommend
using /prov/$MODULE_ID/.

• The slot identifier (e.g. logo_bw), so that we know what file is actually requested.

• A unique identifier that changes every time the user uploads a new file to the slot.
This is necessary because many phones download each logo/firmware only once and
then use the local copy until the filename changes. Such an identifier is automatically
provided by Operator, see below.

The provider needs to do the following when generating the configuration file:

(1) Determine which logo slot should be used with the given phone.

(2) Check whether there is a logo uploaded in that slot.

(3) If it is, generate a filename for it and put it in the configuration file.

The association between phone types and logos/firmwares is done using the FW variable in
phone_types (it may contain multiple comma-separated values, e.g. a logo and a firmware):

spa502g 1 ``Example SPA502G'' FW=logo_bw
spa504g 4 ``Example SPA504G'' FW=logo_bw
spa525g 4 ``Example SPA525G'' FW=logo_color
...

19

Then, you need to edit the provider:

// ...
associatePhone(...);

$firmwares = phoneFirmwares(`logo', true);

if ($firmwares) {
$logoSlot = $firmwares[0];
$logoId = $FIRMWARE_TYPES[$logoSlot][`FW_CONTENT_ID'];
$logoPath = ``/prov/$MODULE_ID/logo/$logoSlot/$logoId.png'';

}

The phoneFirmwares function accomplishes steps (1) and (2). It returns the list of firmware
slots associated with the current phone type (it must be called after associatePhone() in
order to know the phone type), further filtered as specified in the arguments. The first
argument says that we are interested only in logos (not firmwares), the second that we want
only non-empty slots (that have a file uploaded).

E.g. for a SPA502G phone, the return value will be array('logo_bw') if there is a black
and white logo uploaded, array() otherwise.

$FIRMWARE_TYPES['slot_identifier'] contains additional information about the slot and
its contents (see the Reference Guide). One of its fields, 'FW_CONTENT_ID', is set to a random
hexadecimal identifier each time a new file is uploaded to the slot and thus guaranteed to
change with each upload.

And finally, you should edit the configuration template to use the computed $logoPath
variable and put the right directives in the configuration file:

@ if ($DISPLAY_LOGO && $logoPath) {
<BMP_Picture_Download_URL>tftp://{$OPERATOR_IP}{$logoPath}</BMP_Picture_Download_URL>
<Select_Background_Picture>BMP Picture</Select_Background_Picture>

@ }

Operator allows the administrator to globally disable displaying logos on phones. This
setting is reflected in the $DISPLAY_LOGO variable, which your module should respect.

Now all that remains is to actually send the logo to the phone when it asks for it. That’s
almost exactly the same as in the fixed filename case:

if (preg_match(``~^/prov/$MODULE_ID/logo/([^/]+)/([^/]+).bmp~i'',
$PATH, $matches)) {

$logoSlot = $matches[1];
if (haveFirmware($logoSlot)) {

sendFile(getFirmwareFile($logoSlot, `logo.bmp'));
} else {

sendNotFound();
}

}

That’s all! You can try the fifth version of our example, you should be able to upload a logo
and have it shown on the phone’s screen.

Preprocessing Logos

Most phones accept logos only in one exact combination of file format, resolution and colour
depth. Usually an obscure one like a variant of 4-bit BMP that no ordinary user knows how
to create. Instead of explaining this tedious process to everyone, you can allow uploading
logos in arbitrary fomats and convert them to the right one in the preprocessing script.

20

For that reason, Operator contains the netpbm image manipulation toolkit. It is a collection
of small standalone programs each of which performs a simple image operation. Most of
them behave as filters, i.e. they read from standard input and write to standard output,
allowing them to be easily chained into pipelines. You may find the following especially
useful:

<format>toppm and ppmto<format> Convert between various image formats and PPM.
Thus to convert e.g. from PNG to BMP, you can use pngtoppm | ppmtobmp.

ppmquant Reduce the color depth of images. Phones are very picky about color depth.

ppmscale Change the dimensions of an image.

And many more. See the netpbm manual for details. A few additional helper functions are
provided by Operator:

anytoppm <in-file> <out-file> Autodetect the format of the input image (based on file
header, not the extension) and convert it to PPM.

ppmfix Some of the netpbm tools output invalid PPMs when the image contains only two
colors. Some other crash when given such as input. It may be needed to add ppmfix
to various places in the pipeline (esp. after ppmquant and before ppmto<format> but
possibly elsewhere, too). This may require some experimenting. When desperate, you
can always put a ppmfix between every two netpbm commands. A good way of testing
this is trying to upload an all-black image.

An example autoconverting preprocessing script for SPAs might look like:

anytoppm $FW_INFILE _tmp/logo.ppm || reject_firmware
case $FW_IDENT in
logo_bw)
BMP 128x48 (1-bit)
cat _tmp/logo.ppm | pnmscale -width 128 -height 48 \

| ppmquant 2 | ppmdist | ppmfix \
| ppmtobmp >logo.bmp

;;
logo_color)
BMP 320x240 (1, 4, 8, 24, or 32-bit)
cat _tmp/logo.ppm | pnmscale -width 320 -height 240 \

| ppmfix | ppmtobmp >logo.bmp
;;

esac

cat $TARGET | bmptopnm | ppmfix | pnmtopng >_preview.png
accept_firmware

The optional _preview.png file is used by the Administration to show the user a preview
of the converted logo.

Firmwares: A Word of Warning

Firmware updates are handled in pretty much the same way. User uploads an upgrade
image, it is verified and preprecessed and the resulting file(s) is offered to the phone under
either fixed or configured filename(s).

There are some additional caveats though:

• Not all phones support it. And even for those that claim to support it, it doesn’t
always work.

• It is almost always poorly documented or undocumented. Usually a lot of experiment-
ing and packet sniffing is required to understand the process.

21

http://netpbm.sourceforge.net/
http://netpbm.sourceforge.net/doc/

• There are whole classes of phones that share a common firmware. E.g. Cisco releases
only one firmware image for all SPA 30x and 50x phones (which are essentially the
same phone, differing only in number of lines and the presence of an LCD). This
usually corresponds to one firmware slot in Operator.

– However, sometimes the classes are not clear-cut and even overlap and change
with time. Polycoms are extremely notable for this. In one version, VVX 1500
shares firmware with SoundPoint phones, in another, with the other VVXs. As we
can never be sure what the ”groups” will be in the next version, we cannot create
any fixed per-group slots in Operator. Instead, we offer three generic numbered
slots to which you can upload any firmware images you like and using some
magic with filenames the phones will work out what to download themselves. See
Operator’s Polycom module source code to get a better picture.

• The provisioning system itself doesn’t know which phones need upgrading and which
already have the new version. Thus, the upgrade is usually unconditionally offered to
all the phones of the corresponding type, every time they ask. It’s up to each phone
to detect whether it should actually perform an upgrade, i.e., whether the offered
firmware is different from its own. There are various ways of achieving that and all
have some implications for how the provisioning module should behave.

– Some phones start downloading the firmware, inspect the header for the version
and if it’s the same, immediately abort the transfer. This seems to be the most
common variety.

– Some phones only check whether the firmware filename specified in the configu-
ration changed. If it’s the same as last time, they don’t even try to download the
file. Thus it’s important to give each uploaded firmware a unique virtual filename
(this was already discussed in the section on logos, see above).

– There may be even ones that always download the whole file before comparing
anything. In such cases just having a firmware image uploaded might significantly
slow down phone boot.

– Perhaps there are even ones that always perform an upgrade, even if the target
version is exactly the same. We haven’t met any examples of that so far.

• Almost all phones do some sanity checking on the firmware to see that it’s usable with
the given phone, wasn’t corrupted during transfer, etc. However, there is no guarantee
of this, so be careful regarding what you are sending to the phone. In the extreme
case, you could end up bricking your phone.
Therefore we recommend to do at least some basic verification on the uploaded file.
This involves a lot of guesswork as the firmware structure is practically always un-
documented. A partial check may be better than nothing: e.g. if the firmware is
distributed as a zip archive, you can check filenames inside the archive. You don’t
have to be afraid of being ”too strict”: the user can override the check in case of false
positives. It serves more as a warning to someone who mistakenly uploads firmware
for a different model or a .exe updater instead of a .bin image.

• Sometimes the steps needed to upgrade the firmware may depend on the firmware
version currently present on the phone (which the provisioning system usually doesn’t
know). For example, it may not be possible to directly upgrade from firmware 1.1
to 2.0, instead having to go through 1.2. This can almost never by handled by the
provisioning system and the administrator has to tak care of this himself; however, if
you know such a problem, it’s good to at least warn about it in the slot’s LONGDESC.

• Some firwares are distributed as one opaque binary file. These are easy to understand
and work with. Others have the form of a zip archive that has to be unpacked and the
phone downloads each of the files individually. That is one reason why there is a whole
directory for the preprocessed firmware and not just a single file. Tools like unzip,
tar, find are at your disposal in the preprocessing script to unpack the archive, select
the right files from it, etc.

– This can often get tricky. Polycoms once again offer a great example. Their
firmware zips contain everything: firmware images themselves, configuration files,

22

background pictures, etc. You must very carefully filter the archive contents to
decide what files to offer to the phone. For example, you need to prevent the
configuration files distributed with the firmware from being used instead of the
generated ones. Whitelisting is usually better than blacklisting in these cases.
Again, see our Polycom module for details.

The hard part is working out the logic. Implementing it is usually a few lines of code.

Changelog

2.5.3

• Fixed a PHP syntax error (extra curly brace in providers/spa.php) in examples 1
through 4 introduced in 2.3.1.

• Fixed the Download Configuration functionality in example modules.

2.3.1

• Added firmwares/logos support. Some support had been available since 2.2.0 beta 3
but only from 2.3.1 all the features listed here are available and documented.

2.2.2

• Changed the dialplan API to use dialplans/*.php scripts and the $DIALPLAN_TYPE
phone type variable instead of dialplan-generating functions and generateDialplan()
in provider. generateDialplan() (and related functionality) becomes deprecated
and will be removed in a future version. (This was necessary in order to be able
to trigger ”some phones don’t have an up-to-date configuration” notifications when
dialplan changes.)

2.2.0 RC1

• Added support for module archives where are the files are in one toplevel directory.

23

	What Are Provisioning Modules?
	Module Installation

	A Simple Provisioning Module
	Trying Out the Example
	Provisioning Module Structure
	The info File
	The phone_types File
	The Provider(s)
	Provider Input
	Provider Output
	associatePhone()
	A Short Example

	Templates
	Template Syntax
	Template Input

	Simple Resync (SIP NOTIFY)

	Advanced Topics
	Dialplans
	Dialplan Script Input
	Dialplan Script Output
	Associating Dialplans with Phones
	Simplifying Dialplans
	An Example

	Handling Misbehaved Phones
	Two-Layer Configuration
	Redirection
	Two-Stage Detection, Markers
	Filename Conflicts, Module Sequence

	The Download Configuration Feature
	Efficiently Handling Larger Number of Phone Types
	The $PHONE_TYPES array
	@set and @unset
	Variable expansion in phone_types

	Implementing Custom Resync Mechanisms
	Resync Script Input
	HTTP(S) Resync
	A Completely Generic Resync

	Firmwares and Logos
	Slots
	Defining Slots
	Verification & Preprocessing
	The Preprocessing Script
	Serving the Files to Phones
	Preprocessing Logos
	Firmwares: A Word of Warning

	Changelog
	2.5.3
	2.3.1
	2.2.2
	2.2.0 RC1

