
Kerio Operator Provisioning Reference Guide
for Kerio Operator 2.6.0

Variables

This section presents and overview of all the ”input” variables that come preset when your scripts are run.
They are shown together as many variables are available in several different contexts under the same name. A
general rule of thumb is that a given variable is available everywhere that it makes sense. E.g.

• Variables describing global Operator configuration ($TIMEZONE_OFFSET, $VOICEMAIL_EXT) are available
everywhere.

• Variables bound to a phone ($LINES, $ADMIN_PASSWORD, setPhoneVar() variables) are available only
where an association to a specific phone is known, i.e.:

– In providers after associatePhone()
– In resync scripts from the start

• Request-related variables ($PATH, $PROTO, ...) are available only in providers, from the start.

In the following table, the Avail. column contains letters indicating the contexts in which a given variable is
available:

P Provider.

A Provider after associatePhone().

R Resync script.

T phone_types variable expansion.

F Firmware script.

Entries are sorted in a very rough order of importance.

Variable Avail. Description
(module persistent globals) PR Any variables set with setModuleVar(). See its description under Func-

tions.
Request Variables
$PATH P The filename requested by the phone, including full path. Normalized:

starts with a /, double slashes removed, /./ and /../ components re-
solved and removed.

$PROTO P The protocol using which the request was received. One of the strings
'tftp', 'http' and 'ftp'.

$OPERATOR_IP P IP address of the Operator machine. In case of multiple network inter-
faces, the IP on which the request was receieved (i.e., the one that the
phone ”can see”). This is the ”right” address to be set as SIP proxy,
NTP server, etc. in the phone configuration).

$PHONE_IP P The IP adress from which the provisioning request came, i.e., of the
phone. Not available in resync scripts, use $LAST_IP there. Neither is
probably of much use, offered merely for completeness.

... continued on next page

1

Variable Avail. Description
(markers) P Any variables set with setMarker(). See the Two-stage configuration;

markers section in the tutorial.
$HTTP_* P HTTP headers, available under the same names as in CGI, i.e. con-

verted to uppercase, with dashes replaced by underlines and prefixed
by 'HTTP_'. E.g. $HTTP_USER_AGENT, $HTTP_ACCEPT, etc.

$OPT_* P TFTP Options (RFC 2347) E.g. $OPT_blksize, etc.
Global Operator Configuration
$TIMEZONE PR Current Operator timezone as a POSIX/tzdata timezone name. E.g.

Europe/Prague or America/New_York. See Wikipedia for a complete
list. In most cases (unless your phone already understands these strings)
it’s easier to use $TIMEZONE_OFFSET.

$TIMEZONE_OFFSET PR Current Operator UTC offset in seconds. If DST is currently in effect,
this value already includes the DST offset. This is usually the easiest
way to configure phone’s timezones – most Kerio’s built-in provisioning
modules use it.

$TIMEZONE_OFFSET_BASE PR Same as above, only doesn’t include any DST offset.
$VOICEMAIL_EXT PR The voicemail access extension (usually 50). Can be used to make the

”envelope” button present on many phones dial this number for faster
voicemail access.

$DISPLAY_LOGO PR Boolean indicating whether phones should display configured logos. See
the chapter on logos in the tutorial.

$AUTODIAL_TIMEOUT PR Auto dial timeout in seconds, sometimes also known as inter-digit timer.
Defines time before a number is automatically dialed.

$HOSTNAME PR Operator hostname
Module Variables
$PHONE_TYPES PRF Array of all the phone types defined in phone_types. Keys are

type identifiers (first column in phone_types), values are arrays
containing keys corresponding to variables in the Phone type vari-
ables section below. Usually used only to test phone type existence
(isset($PHONE_TYPES[$sometype])), see Efficiently handling larger
number of phone types in the tutorial. Example:

array(
`spa504g' => array(

'IDENT' => `spa504g',
'MAX_LINES' => 4,
`SECURE_SUPPORT' => false,
// ...

),
// ...

)

... continued on next page

2

http://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Variable Avail. Description
$FIRMWARE_TYPES PRF Array of all the firmware slots defined in firmware types. Keys are

the slot identifiers (first column), values are associative arrays with the
following keys:

'FW_IDENT' The slot identifier, once again.

'FW_CONTENT_ID' A unique hexadecimal ID regenerated each time a
new file is uploaded to the slot (even if it’s identical to the previous
one). This is useful in generating firmware filenames for phones
which download new firmware only when the filename changes.
See Firmware and Logos -> Arbitrary Filenames in the tutorial.

FW_UPLOADED True if a file is uploaded in the slot, false otherwise.

FW_ORIGNAME The original name (without path) of the file uploaded in
the slot. The same as the $FW_ORIGNAME variable available in the
firmware preprocessing script.

FW_SIZE The disk space occupied by the preprocessed firmware, in
bytes. Displayed in Administration, probably useless in scripts.

FW_SCRIPT The name of the script used to preprocess files for this slot,
without path or extension, i.e., the same as what is passed for
SCRIPT= in firmware_types

Plus any extra NAME=VALUE assignments from “firmware_types“.
$MODULE_ID PRF ID under which the module is internally stored. Useful for constructing

module-private filenames for auxiliary provisioning files (firmwares, lo-
gos, additional configuration files, etc.) for which a name can be chosen
arbitrarily. See Arbitrary Filenames under Firmwares and Logos in the
tutorial.

$MODULE_UUID PRF The UUID set in the info file.
$MODULE_VERSION PRF Module version set in the info file.
$DIALPLAN_(name) PRF The dialplan string generated by the dialplans/(name).php script.

See Dialplans in the tutorial.
Phone Type Variables
$IDENT ART The phone type identifier (first column in phone_types).
$MAX_LINES ART The phone type’s maximum number of lines as set in phone_types.
(phone type options) ART Any name=value options set in phone_types. E.g. $RESYNC, $REVIEW,

... Usually uppercase. See the Phone Type Options section for a list.
(custom phone type vari-
ables)

ART Any name=value definitions from phone_types that have no special
meaning for Operator are available as-is. Customarily named lowercase.
See Efficiently Handling Larger Number of Phone Types in the tutorial.

Phone Configuration
$MAC AR The phone’s MAC address in normalized format (lowercase, without

colons).
... continued on next page

3

Variable Avail. Description
$LINES AR An array of phone’s assigned lines. Each item is an array with the

following keys:

TELNUM The extension number (e.g. 10)

SIP_USERNAME The SIP username. May differ from TELNUM when using
multiple registration. E.g. 10, 10p1 or 10home. Alphanumeric,
lowercase.

SIP_PASSWORD The SIP password. Usually generated.

SECURE Whether secure SIP and RTP is enabled for this line. Only
allowed if the phone type indicates SECURE_SUPPORT=1 in its op-
tions.

USER_FULLNAME Full name of the Operator user to whom this extension
is assigned.

USERNAME, USER_EMAIL The username and e-mail of this user. Probably
uninteresting.

$ADMIN_PASSWORD AR The password that should be used to protect the phone’s web adminis-
tration. If master password is enabled, this is the master phone pass-
word, otherwise the password set in provisioned phone properties (gen-
erated by default).

$PHONE_LABEL AR The label for the phone as a whole as opposed to its individual lines.
Also known as station name. Should be displayed on the phone’s screen
if possible.

$PHONE_DESCRIPTION AR Admin’s description of the phone. For internal use, should NOT be
displayed anywhere. Available only for completeness, probably useless.

$DIALPLAN AR The dialplan for this phone, based on $DIALPLAN_TYPE set in
phone_types. E.g. when $DIALPLAN_TYPE == 'spa', this variable has
identical content to DIALPLAN_spa, i.e., whatever string was generated
by the dialplans/spa.php script. See Dialplans in the tutorial.

Last Read Phone Configuration (useful mainly in resync)
$LAST_IP AR Phone’s last know IP address. Our ”best shot” when trying to resync

the phone.
$LAST_CONFIG AR The values of variables from the Phone configuration section at

the last time that the phone has read the configuration. These
should be the configuration that the phone ”has seen” and cur-
rently uses. See Implementing custom resync mechanisms in the tu-
torial for usage example. Contains e.g. $LAST_CONFIG['LINES'],
$LAST_CONFIG['ADMIN_PASSWORD'], etc.

Firmware Script Variables
$FW_IDENT F Identifier (first column from firmware_types) of the slot the file is

uploaded to. Useful when one script handles several similar slots.
$FW_ORIGNAME F The original name (without path) of the file uploaded by the user. E.g.

'spa942-6-1-5a.bin'.
$FW_INFILE F The physical path of a temporary file to which the uploaded file was

saved. This is the file that you can read, copy, convert, unzip or oth-
erwise. Do not inspect its filename, it will be some random gibberish.
Use $FW_ORIGNAME for that purpose.

$FW_OUTDIR F The physical path of a freshly-created directory to which the firmware
script should put the preprocessed output. The directory will be
preserved as-is (until the firmware is delete or replaced) and made
available to the provider script, which can access its files using
getFirmwareFile().

... continued on next page

4

Variable Avail. Description
$FW_VERIFY F If 1, the script should perform usual verification of the uploaded file. If

false, it should fail only if it’s physically impossible to preprocess the
uploaded file (e.g. trying to unzip a file that’s not a zip archive).

Tabular Files

On several occasions the provisioning modules need to describe lists of things (currently phone types and
firmware slots). For this purpose, so-called tabular files are used. Their syntax is described throughout the
tutorial, the advanced parts especially in Efficiently Handling Larger Number of Phone Types. Everything
described there (variable expansions, @set, etc.) applies all the tabular files.

In the table below, options that are written in a fixed column without specifying a name have the column
number in the Pos. column. Those written as NAME=value have the name in the Name column. Positional
options can also be written as named (e.g. IDENT=spa504g) but this is discouraged.

phone_types options

Pos. Name Default Description
1 (IDENT) (none) A module-unique identifier for the phone type. Preferrably

lowercase, may contain underscores (e.g. spa504g).
2 (MAX_LINES) (none) Maximum number of lines that can be assigned to a phone

of this type.
3 (DESC) (none) A human-readable name for the phone type, including man-

ufacturer. E.g. Cisco SPA504G. Show on the Provisioned
Phones screen in Administration.

RESYNC (none) The method used to resync the phone. Either a built-in
one (named uppercase, see Built-In Resync Methods) or
the name of a resync script (customarily lowercase), which
should then be located in "resync/$RESYNC.php" inside
your module.

(resync options) (none) Resync methods may take additional options. For
SIPNOTIFY, they are named SIPNOTIFY_something, see
Butilt-In Resync Methods .

REVIEW '' A whitespace-separated list of configuration files that be-
long to phones of this type. Use variable expansion to put
things like MAC address ($MAC) or phone type ($IDENT) in
the filenames. Refer to the The Download Configuration
feature and Variable expansion in phone_types sections in
the tutorial for details.

SECURE_SUPPORT 0 Set to 1 when the phone supports Secure SIP and SRTP. If
you indicate security support, your module MUST honor
the SECURE flag for phone lines and MUST ensure secure
connection is actually used (the users will count on it).

FW (empty) A comma-separated list of identifiers of firmware slots as-
sociated with this phone. This serves two purposes:

• It is used by phoneFirmwares() to return
only slots relevant to the current phone’s
type.

• When a file is uploaded to a slot, all phones
whose types list the slot in their FW will be
marked as requiring a resync.

... continued on next page

5

Pos. Name Default Description
(custom op-
tions)

(none) You can add arbitrary custom options to phone_types
(customarily named lowercase to avoid clashes with future
Operator options). Any name=value pair you include in
phone_types will be available as a variable in the A, R,
T contexts as explained in Variables. See the Efficiently
handling larger number of phone types for usage of this
feature.

firmware_types options

Pos. Name Default Description
1 (FW_IDENT) (none) A module-unique identifier for this slot.
2 (DESC) (none) A humand-readable name for the slot, shown in the

Firmwares and Logos dialog in Administration.
3 (ROLE) (none) The role of the slot. Can be one of firmware, logo

or other. It is used to display the slot on the correct
tab of the firmwares dialog, it can be used as a filter in
phoneFirmwares() and moduleFirmwares() but otherwise
has no special significance. You could use a logo slot for
firmwares if you really wanted to.

SCRIPT $FW_IDENT The name of the script used to preprocess files up-
loaded to this slot, without path or extensions. Op-
erators tries to run the files firmware/$SCRIPT.sh and
firmware/$SCRIPT.php from the module directory, in this
order.

LONGDESC (empty) A long textual description (several lines) of what the user
is supposed to upload to the slot. For firmware it’s good to
directly include download links. Any URL is automatically
converted into a clickable hyperlink. The description is
displayed in the upload dialog (i.e., when one clicks on Edit
on the slot).

(custom op-
tions)

(none) You can add any arbitrary name=value options (preferrably
named lowercase to avoid clashes with future Operator
names). They will be in the preprocessing script (as global
variables) and in the $FIRMWARE_TYPES entry for this slot,
accessible from the provider.

Built-in Resync Methods

SIPNOTIFY

Functions

Functions marked * are ”use only when you know what you are doing” functions.

General-Use Functions

transliterate($str) [AR] Replace accented characters from $str with their ASCII equivalents. The exact
transliteration rules are set in Operator Administration > Advanced Options > Transliteration.

normalizeMac($mac) [ART] Normalize a MAC address: remove punctuation and make lowercase.

getStaticFile($name) Returns a full path to the installed copy of the misc/$name file from your module.

6

setModuleVar($name, $val) [PR] Store a persistent global variable. After calling
setModuleVar('somevar', 5), variable $somevar will be available preset in all contexts to the
value of 5, similarly to how e.g. $TIMEZONE is available. Assigning to $somevar DOES NOT change
the persistently stored value. That can be only done by setModuleVar(). There is no way to ”unset”
a module variable; you can set it to null, though. This allows modules to maintain state. However, we
haven’t found a use for it ourselves yet. Each module has its own namespace so there is no risk for
naming conflicts.

setPhoneVar($name, $val) [AR] The same, only the variable is bound to a phone, each phone has its own
namespace.

Provider Functions

Output Functions

A provider script can end two ways: successfully and unsuccessfully.

A successful exit means that the module generates a configuration file and sends it to the phone. It can write
its output to STDOUT as usual (with echo and friends), however, using one of the provided output functions,
escpecially sendTemplate(), is strongly recommended as it allows end users to override the templates with
custom configuration modifications.

An unsuccessful exit consists of returning an error status (NotFound, PassNext) to the provisioning engine
by calling one of the corresponding functions below. A module that exists unsucessfully MUST NOT write
anything to STDOUT (i.e., with echo).

If your script reaches its end or raises an exception, passNext() is called implicitly. In case your module has
already written anything to STDOUT, this partial output will get mixed with output of the following modules.
Another reason why manual output is discouraged.

Unsuccessful Exit Functions Each of these functions returns the corresponding exit status to the provi-
sioning engine and terminates the script.

passNext() Call when you don’t know this file or are not interested in it. It passes the request on to the
remaining modules in the list to try to handle it.

* sendNotFound() Return a ”file not found” error to the phone immediately, without trying other modules.
Use this for files that belong to your phone but you don’t want them to exist, e.g. files to store user
configuration (ringer volume and suchlike) that would overwrite whatever was set using the phone menu
if they existed. To put it simply: do not use this function unless you know what you are doing.

Successful Exit Functions Each of the following functions sends some output and/or returns some status
and terminates the script.

sendTemplate($name) Render a template "templates/$name.tpl" and send the result to the phone. Equiv-
alent to renderTemplate($name); sendOk();. Using sendTemplate() is preferred.

sendStatic($name) Sends the file "misc/$name" from your module directory to the phone as-is. Mostly useful
for binary and other special files. For static configuration files use sendTemplate() so that they can be
overriden by the user!

sendFile($path) Sends a file given absolute path in the Operator file system. Only ever use this with paths
returned by other functions (e.g. getFirmwareFile()). Never constructs any physical file paths yourself
as Operator’s directory layout may change in any way between versions!

* sendOk() Return success without outputting anything. Use when output was previously sent manually. May
be used in rare cases without any preceding output to force sending an empty file. However, if it is possible
to put something in the empty file, it’s recommended to create an (empty) template for it so that the user
can override the template with some non-empty content.

7

Output-Only Functions These functions send output but do not terminate the script. Manual output is
error-prone. Use only when you have a good reason to!

* renderTemplate($name) Send the output of a template without exiting. Can be used to mix templates with
other kinds of output, although we can’t think of any use case for that. Included for completeness.

Other Functions

associatePhone($mac_address, $phone_type, $update_type = true) Inform Operator that the currently
generated configuration file belongs to a phone with MAC address $mac_address and phone type
$phone_type (must be a valid identifier from your module’s phone_types), create a record for this phone
in Provisioned Phones if one doesn’t exist (and generate a line if enabled), fetch its configuration (lines,
etc.) and put it in the respective global variables (see the Phone configuration section under Variables
above). Set update_type to false to use phone_type from the database. If the phone doesn’t exist,
phone_type variable will still be used to create the phone.

Firmware-Related Functions

haveFirmware($slot) Return true if a file is upload to firmware slot $slot, false otherwise.

getFirmwareFile($slot, $file) Return the physical path where the file created by the firmware preprocess-
ing script as $FW_OUTDIR/$file is stored. You can use usual PHP functions (fopen, fread, ...) to work
with this file, but usually you will just pass the path to sendFile(). See the tutorial for an example.
If there is nothing uploaded in the slot, false is returned. If there is something uploaded but $file
doesn’t exist in the preprocessed directory, null is returned.

moduleFirmwares($role = '', $uploadedOnly = false, $filters = array()) Return a list of module’s
firmware slots matching criteria given by the arguments:

• $role: Return only slots with a given role (firmware, logo or other). By default slots of all roles
are returned.

• $uploadedOnly: If true, return only slots that have a file uploaded. By default all slots are returned.
• $filters: An associative array of additional filters on custom slot properties (as specified in

firmware_types).
For example, if your firmware_types looks like:

fw1 ``Firmware 1'' firmware subtype=firmware
fw2 ``Firmware 2'' firmware subtype=firmware
bootloader1 ``Bootloader 1'' firmware subtype=bootloader

then moduleFirmwares('firmware', false, array('subtype' => 'firmware')) would return:
array(`fw1', `fw2')

The return value is an array of slot identifiers (strings). Only slots matching all the specified criteria are
included.

phoneFirmwares($role = '', $uploadedOnly = false, $filters = array()) Same as
moduleFirmwares() but adds one more implicit criterion: only slots associated with the current phone’s
type (as specified by FW= in phone_types) are returned. It must be called after associatePhone() so
that it knows the phone type.

Resync Script Functions

urlopenPhone($scheme, $pathAndQuery, $opts = array()) Open the URL
"$scheme://$LAST_IP/$pathAndQuery" (where $LAST_IP is the last known IP of the phone) and
return a file handle for reading the contents.
$opts may contain the following options:

8

Name Default Description
user (none) Username for HTTP authentication.
password (none) Password for HTTP authentication.
auth 'auto' HTTP authentication type: 'basic', 'digest' or

'auto'. It’s recommended to set this to the right
type instead if auto. In case of basic auth, it will
save you one extra request (that would end with
401). In case of digest auth, it will increase security.

body (none) The request body. When present, a POST request
is sent instead of the default GET.

referer (none) Set the Referer header.
verifySSlCert true Set to false to disable SSL certificate verification.

Almost always needed when using HTTPS. The de-
fault is true only for ”formal correctness”, other-
wise useless.

Uses CURL as backend. Cookies are automagically preserved between requests.

connectPhone($proto, $port) Return a socket connected to the phone using protocol $proto ('tcp' or
'udp') on port $port.
Equivalent to:

$sock = socket_create(AF_INET, SOCK_STREAM, SOL_TCP); // for tcp
$sock = socket_create(AF_INET, SOCK_DGRAM, SOL_UDP); // for udp
socket_connect($sock, $LAST_IP, $port);

You shouldn’t use socket_create or socket_connect in your scripts directly. Always use
connectPhone().

getRegCallId($lineNo) Get the Call-Id of the registration call of phone’s $lineNo-th line (0-based, usually
0). Some phones (e.g. some archaic Cisco models) may require this value in resync requests.

sendSipNotify($opts) Send a SIP NOTIFY request to the phone. This does exactly the same as the
SIPNOTIFY built-in resync method. It may be used when you need to compute the SIP NOTIFY op-
tions in some more complex way than RESYNC=SIPNOTIFY allows. It may also be used to combine resync
methods: e.g. the Kerio’s built-in SPA module does resync using both HTTP (urlopenPhone) and SIP
NOTIFY (sendSipNotify) as each of these methods has its own unreliabilities.
The individual options availables:

Name Default Description
auth 'none' Whether and how to authenticate the request.

Allowed values: 'none', 'auto', 'basic' and
'digest'. Setting a specific type is preferred
to 'auto' for the same reasons as outlined in
urlopenPhone().

username $LAST_CONFIG ['LINES'][0]
['SIP_USERNAME']

The To: username used in the resync request.

authUser (same as username) The authentication username for the resync re-
quest.

password $LAST_CONFIG ['LINES'][0]
['SIP_PASSWORD']

The password used to authenticate the resync
request.

event 'check-sync' The Event: header.
arg (none) Additional arguments for the event. They

will be appended after the event name sep-
arated by a semicolon. E.g. when arg
is 'reboot=true', the request will contain:
Event: check-sync;reboot=true

... continued on next page

9

Name Default Description
addHeaders array() Additional headers as a list of array($name,

$value) pairs.
body '' The request body. Usually empty.
port 5060 Port to send the packets to.
callId (random) The Call-Id for the request. Some phones may

require setting it to getRegCallId(0). Most
don’t. Don’t touch unless you need to.

cseq 1 You probably shouldn’t change this either.

The resulting packet will look like this:

NOTIFY sip:{$username}@{$LAST_IP} SIP/2.0``
Via: SIP/2.0/UDP {$OPERATOR_IP}:{/*source port*/};branch=1
From: <sip:admin@{$OPERATOR_IP}>
To: <sip:{$username}@{$LAST_IP}>
Event: {$event}{$arg ? ''; $arg`` : ''``}
Call-ID: {$callId}
CSeq: {$cseq} NOTIFY
Contact: <sip:admin@{$OPERATOR_IP}>
[Authorization: ...]
Content-Length: {strlen($body)}

{$body}

Dialplan Script Functions

dialPlanSimplifyOnedigit($rawData) See Diaplans in the tutorial.

Changelog

2.3.1

• $FIRMWARE_TYPES variable.

• Documented the firmware API.

2.2.2

• Changed the dialplan API to use dialplans/*.php scripts and the $DIALPLAN_TYPE phone type variable
instead of dialplan-generating functions and generateDialplan() in provider. generateDialplan() (and
related functionality) becomes deprecated and will be removed in a future version. (This was necessary
in order to be able to trigger ”some phones don’t have an up-to-date configuration” notifications when
dialplan changes.)

2.2.0 beta 3

• Cookie support in HTTP resync.

• Basic support for firmwares and logos (firmware_types, getFirmwareFile(), haveFirmware(),
phoneFirmwares(), moduleFirmwares(), preprocessing script API, etc.). Has several bugs with rea-
gard to custom provisioning modules (e.g. firmware scripts must have Unix line ending instead of being
autoconverted like all the other files). We recommend using 2.3.1 or above.

10

	Variables
	Tabular Files
	phone_types options
	firmware_types options

	Built-in Resync Methods
	SIPNOTIFY

	Functions
	General-Use Functions
	Provider Functions
	Output Functions
	Other Functions

	Resync Script Functions
	Dialplan Script Functions

	Changelog
	2.3.1
	2.2.2
	2.2.0 beta 3

